I INTERNATIONAL CONFERENCE KRASNOYARSK, RUSSIA 30 July 2020

••••••••••••••••••

«International Conference on Advances in Material Science and Technology - CAMSTech-2020»

«Research of the transient processes for discrete control systems»

B R Kassimova, A U Sadvakassova, L Zh Sansyzbay

CAMSTECH

International Conference on Advances in Material Science and Technology

Abstract

The analysis of the discrete control system on the stability and accuracy of the transient process is conducted. Conclusion: in a discrete system stability, accuracy and control quality depend on the parameters of the gain system and the time.

The discrete organization of the control unit

Following ratios were obtained:

 $u(t) = u_m = const,$

 $u(t) = k\varepsilon(t),$

٠

٠

 $\varepsilon(t) = g(t) - x(t).$

Let g(t) = 0, then $u_m = -kx(mT)$.

For the desired time interval, a subsequent differential equation could be derived:

 $dx/dt = u_m \Longrightarrow x(t) = u_m t + c.$

The constant c could be found taking the time when t = mT: ٠

x(mT) = -kx(mT)mT + c,

c = x(mT) (1 + kmT).

As a result, following expression for x(t) was obtained:

x(t) = x(mT)(1 - kt + kmT).

Considering a time when t = (m + 1)T:

x[(m+1)T] = x[mT](1 - k(m+1)T + kmT),

x[(m+1)T] = x[mT](1 - kmT - kT + kmT),

x[(m+1)T] = x[mT](1-kT).

For a time t = (m + 2)T, following could be derived: ٠

 $x[(m+2)T] = x[(m+1)T](1-kT) = x[mT](1-kT)^{2}$

For any arbitrary time: ٠

 $x[nT] = x_0 (1 - kT)^n,$

where x_0 is determined by the initial conditions.

International Conference on Advances in Material Science and Technology

Case 1

Table 1. Case 1. kT < 1, for example kT = 0.5.

n	0	1	2	3
x[nT]	<i>x</i> ₀	$0.5x_0$	$0.25x_0$	$0.125x_0$

Figure 1. The transient response (Case 1).

In the chosen exemplification, a certain form of a periodic process can be observed (Figure 1).

Table 2. Case 2. 1<kT<2, for example kT=1.5.

Figure 2. The transient response (Case 2).

Obtained values indicate an oscillating converging (stable) process as illustrated in Figure 2.

Case 3

An oscillating converging (unstable) process can be noticed in such case (Figure 7).

International Conference on Advances in Material Science and Technology

Conclusions

Results, implementation

- Thus, an apparent dependence of discrete system features such as stability, accuracy and ٠ quality of control on parameters of the system especially time variable T was demonstrated.
- Varying the values of kT can affect the stability of the system, with larger values ٠ worsening the type of the transient process.
- There are certain restrictions on the value of kT, with a particular limit upon exceeding ٠ kT which the system becomes unstable.
- Therefore, for a fixed value of T a fixed limit to the values of the gain k is present. ٠
- If value of the gain k is assumed to be fixed, the indicators of the system worsen with an ٠ increase in the sampling period T, hence with T exceeding a certain limit value the system losing stability can be concluded.
- Based upon obtained results, the discrete system for linear control algorithms in terms of ٠ control process is not always worse than a continuous system.

International Conference on Advances in Material Science and Technology

Conclusions

Results, implementation

A discrete control system has two main advantages over a continuous system:

- ease of modernization (alteration of algorithm);
- higher efficiency when utilized with complex (non-linear, adaptive) control algorithms.

Contacts

B R Kassimova, A U Sadvakassova, L Zh Sansyzbay Department of System analysis and Control, Faculty of Information Technologies, L.N.Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan E-mail: sansyzbaylazzat@gmail.com

I INTERNATIONAL CONFERENCE KRASNOYARSK, RUSSIA 30 July 2020 «International Conference on Advances in Material Science and Technology - CAMSTech-2020»