Electrochemical methods for monitoring the content of polysulfides in environmental objects

O S Aksinenko1, S V Kovaleva1 and A V Korshunov2

1Department of Chemistry and Methods of Teaching Chemistry, Tomsk State Pedagogical University, Tomsk, 634061 Russia
2Department of Building Materials and Materials Science, Moscow State University of Civil Engineering, Moscow, 129337 Russia

2E-mail: korshunovav@mgsu.ru
Stability of polysulfides in aqueous solutions

Figure 1. Calculated dependences of logarithms of equilibrium activities for ion-molecular species on potential (s. h. e.) for system S–H₂O (except SO₄²⁻) at pH 7.5 (a) and 13 (b) (25 °C; [S]ₜₒₜ=0.1 M)

Polysulfides are relatively stable in narrow pH and potential ranges: in an acidic environment, sulfanes quickly decompose to form sulfur and hydrogen sulfide; in an alkaline environment, low-molecular-weight species are stable. In the presence of even low-level oxidizing agents, polysulfides are quickly oxidized to form numerous oxygen-containing compounds.
Speciation of sulfur in the presence of Hg

Fig. 2. Calculated diagrams of the equilibrium activities of ion-molecular species on potential (s. h. e.) in the system Hg–S–H₂O (except SO₄²⁻) at pH 7.5 (a) and 13 (b) (25 °C; total [Hg]=1·10⁻⁵ M and [S]=0.1 M)

Due to the high affinity of mercury to sulfur, the predominant equilibrium phase in the system in a wide pH range is poorly soluble HgS, the region of thermodynamic stability potentials of which overlaps the region of polysulfide potentials
Cathodic stripping voltammetry of polysulfides with Hg-film electrode

Fig. 3. Direct- (a) and alternating-current (b) voltammograms of HgFE in alkaline solutions (supporting electrolyte 0.1 M NaOH) at different concentrations of sodium disulfide: 1) $4 \cdot 10^{-7}$, 2) $6 \cdot 10^{-7}$, 3) $8 \cdot 10^{-7}$, 4) $1.2 \cdot 10^{-6}$, 5) $1.6 \cdot 10^{-6}$, 6) $4 \cdot 10^{-7}$, 7) $6 \cdot 10^{-7}$, 8) $8 \cdot 10^{-7}$, 9) $1 \cdot 10^{-6}$ M ($E_{\text{init}} = -0.5$ V; $E_{\text{end}} = -1.1$ V; $w=40$ mV/s; $\Delta U=3$ mV; $\theta=0^\circ$; $f=25$ Hz)
Summary

• The main products during the oxidation of polysulfides at Hg-film electrode in an alkaline medium (pH=13), regardless the composition of the initial solution, are HgS and S, the subsequent cathodic reduction of which allows to quantify the total content of sulfide and polysulfide species in a solution, as well as average polysulfidity in S_n^{2-} ions.

• Optimal conditions to determine polysulfide ions S_2^{2-} and S_3^{2-} in an alkaline medium (0.1 M NaOH) at HgFE using direct- and alternating current cathodic stripping voltammetry were established: preliminary deaeration of solutions with nitrogen; preelectrolysis potential -0.5 V (sat. Ag/AgCl/KCl); duration of preelectrolysis 1–2 min; subsequent cathodic polarization to $E=-1.0$ V.

• Under these conditions, the concentration dependence of cathode current I_{cat} at $E_{\text{max}}=-0.8\div-0.9$ V is linear in the range of polysulfide concentrations $1\cdot10^{-7}\div1\cdot10^{-3}$ M. The method can be used to determine the total content of polysulfides in solutions and to calculate the average degree of polysulfidity in S_n^{2-} ions.