Natural science education: a multiaspect system of models of mathematics

Krasnoyarsk, ASEDU-2020
1. What is mathematics today? 3
 1.1. Mathematics as a field of activity 14
 1.2. Apparatus model of mathematics 22
 1.3. Model of mathematics as a system of processes 29
 1.4. Mathematics as a system of phenomena 39
 1.5. Historical models of mathematics 57

2. Applications of models of mathematics 62
 2.1. Models of mathematics as a tool for estimating the adequacy of mathematical courses 69
 2.2. Using models of mathematics to form the content of mathematical courses 71
 2.3. Application of mathematics models to increase motivation to learn 91
1. What is mathematics today?
 Let’s develop the idea of Gennady Anatolyevich Klekovkin.
 The development of technology has gone through the following stages:
1. What is mathematics today?
 Let’s develop the idea of Gennady Anatolyevich Klekovkin.
 The development of technology has gone through the following stages:
 1) compensation for the defects of the human body;

 This is the absence of powerful claws, weakness of the dental apparatus, insufficient muscle strength, etc.
1. What is mathematics today?

Let’s develop the idea of Gennady Anatolyevich Klekovkin. The development of technology has gone through the following stages:

1) compensation for the defects of the human body;
2) increase in energy supply;

2.1) The domestication of animals, their use of their power for transport, plowing and other activities.
2.2) Application of natural energy sources: water wheel, windmills, sail.
2.3) The emergence of mechanical energy sources: steam engines, internal combustion engines, nuclear energy, etc.
1. What is mathematics today?

Let’s develop the idea of Gennady Anatolyevich Klekovkin.

The development of technology has gone through the following stages:
1) compensation for the defects of the human body;
2) increase in energy supply;
3) automation of physical activity;

The emergence of industry, mechanical feedback systems, etc.
1. What is mathematics today?
 Let’s develop the idea of Gennady Anatolyevich Klekovkin.
 The development of technology has gone through the following stages:
 1) compensation for the defects of the human body;
 2) increase in energy supply;
 3) automation of physical activity;
 4) automation of algorithmic thinking activity;

 The appearance of devices to facilitate counting, the first mechanical programmable machines (Babbage machine, Hollerith tabulator).
1. What is mathematics today?
 Let’s develop the idea of Gennady Anatolyevich Klekovkin.
 The development of technology has gone through the following stages:
 1) compensation for the defects of the human body;
 2) increase in energy supply;
 3) automation of physical activity;
 4) automation of algorithmic thinking activity;
 5) automation of complex mental activity.
 Modern information systems, including artificial intelligence systems. Newline
 The computer beat not only the world chess champion, but also the world champion in Go!
1. What is mathematics today?

Under these conditions, the priority of the computing apparatus of mathematics ceases to be indisputable!
1. What is mathematics today?

Under these conditions, the priority of the computing apparatus of mathematics ceases to be indisputable!

But in our textbooks and problem books, exam tickets, test systems, the main type of problems — is a calculation problem!!!
1. What is mathematics today?

Under these conditions, the priority of the computing apparatus of mathematics ceases to be indisputable!

But in our textbooks and problem books, exam tickets, test systems, the main type of problems — is a calculation problem!!!

Spells that "mathematics puts the mind in order" do not work today.
1. What is mathematics today?

Under these conditions, the priority of the computing apparatus of mathematics ceases to be indisputable!

But in our textbooks and problem books, exam tickets, test systems, the main type of problems — is a calculation problem!!!

Spells that "mathematics puts the mind in order" do not work today.

But mathematics — is a multifaceted, multifaceted phenomenon! It is not limited to calculations!
1. What is mathematics today?

Under these conditions, the priority of the computing apparatus of mathematics ceases to be indisputable!

But in our textbooks and problem books, exam tickets, test systems, the main type of problems — is a calculation problem!!!

Spells that "mathematics puts the mind in order" do not work today. But mathematics — is a multifaceted, multifaceted phenomenon! It is not limited to calculations!

Therefore, we proposed to formalize mathematics in the form of a system of models, each of which reflects only one aspect of it, to form a voluminous, complex, multifaceted understanding of mathematics.
1.1. Mathematics as a field of activity

System of mathematical theories and methods
1.1. Mathematics as a field of activity

System of mathematical theories and methods

Intramathematical activity
1.1. Mathematics as a field of activity

System of mathematical theories and methods

Intramathematical activity

Technique of intramathematical activity
1.1. Mathematics as a field of activity

System of mathematical theories and methods

Intramathematical activity

Math applications

Technique of intramatrical activity
1.1. Mathematics as a field of activity

System of mathematical theories and methods

Intramathematical activity

Technique of intramathematical activity

Math applications

Mathematics application method
1.1. Mathematics as a field of activity

System of mathematical theories and methods

Intramathematical activity

Math applications

Technique of intramathematical activity

Mathematics application method
1.1. Mathematics as a field of activity

“Pure” math

System of mathematical theories and methods

Intramathematical activity

Math applications

Technique of intramathematical activity

Mathematics application method
1.1. Mathematics as a field of activity

- "Pure" math
- System of mathematical theories and methods
- "Applied" math

- Intramathematical activity
- Math applications

- Technique of intramathematical activity
- Mathematics application method
1.2. Apparatus model of mathematics
1.2. Apparatus model of mathematics

Input information →
1.2. Apparatus model of mathematics

Input information

Conceptual apparatus

Converts information to the form standard for a given field of activity
1.2. Apparatus model of mathematics

- **Conceptual apparatus**: Converts information to the form standard for a given field of activity.
- **Analytical apparatus**: Processes information that has a form that is standard for a given field of activity.

Input information flows from left to right, through the conceptual apparatus, and then through the analytical apparatus.
1.2. Apparatus model of mathematics

- **Conceptual apparatus**: Converts information to the form standard for a given field of activity.

- **Analytical apparatus**: Processes information that has a form that is standard for a given field of activity.

- **Adequacy control apparatus**: Controls the level of adequacy of models.
1.2. Apparatus model of mathematics

- **Input information**
 - **Conceptual apparatus**: Converts information to the form standard for a given field of activity
 - **Analytical apparatus**: Processes information that has a form that is standard for a given field of activity
 - **Adequacy control apparatus**: Controls the level of adequacy of models
1.2. Apparatus model of mathematics

Input information

- Conceptual apparatus
 Converts information to the form standard for a given field of activity

- Analytical apparatus
 Processes information that has a form that is standard for a given field of activity

Adequacy control apparatus
 Controls the level of adequacy of models

Methodological apparatus
 Provides the development of the scientific apparatus
1.3. Model of mathematics as a system of processes

Mathematical activity can be viewed as a system of processes.
1.3. Model of mathematics as a system of processes

Mathematical activity can be viewed as a system of processes.
1.3. Model of mathematics as a system of processes

Mathematical activity can be viewed as a system of processes.

Diagram:

- Initial mathematical phenomena
- Process
1.3. Model of mathematics as a system of processes

Mathematical activity can be viewed as a system of processes.
1.3. Model of mathematics as a system of processes.

Mathematical activity can be viewed as a system of processes.
1.3. Model of mathematics as a system of processes

Mathematical activity can be viewed as a system of processes.
1.3. Model of mathematics as a system of processes

Mathematical activity can be viewed as a system of processes.
1.3. Model of mathematics as a system of processes

Mathematical activity can be viewed as a system of processes.
1.3. Model of mathematics as a system of processes

Mathematical activity can be viewed as a system of processes.
1.3. Model of mathematics as a system of processes

For educational activity, the most important thing is the changes in the subject of activity that occur as a result of managing the processes of changing mathematical phenomena: their formalization, transformations, translation into another mathematical language, search for a solution to the problem and, in particular, proof of mathematical statements.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

Yu.B. Melnikov suggested that under the **algebraic approach to building a model** we understand as a system of three components:
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

Yu.B. Melnikov suggested that under the *algebraic approach to building a model* we understand as a system of three components:

1) complex of basic models;
Yu.B. Melnikov suggested that under the algebraic approach to building a model we understand as a system of three components:
1) complex of basic models;
2) system of typical transformations and typical combinations of models;
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

Yu.B. Melnikov suggested that under the **algebraic approach to building a model** we understand as a system of three components:

1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

Basic phenomena

Yu.B. Melnikov suggested that under the **algebraic approach to building a model** we understand as a system of three components:

1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

Basic phenomena

Transformations and combinations of phenomena

Yu.B. Melnikov suggested that under the algebraic approach to building a model we understand as a system of three components:

1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

| Basic phenomena | Transformations and combinations of phenomena | Approximation mechanism |

Yu.B. Melnikov suggested that under the *algebraic approach to building a model* we understand as a system of three components:

1. complex of basic models;
2. system of typical transformations and typical combinations of models;
3. mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

<table>
<thead>
<tr>
<th>Basic phenomena</th>
<th>Transformations and combinations of phenomena</th>
<th>Approximation mechanism</th>
</tr>
</thead>
</table>

Yu.B. Melnikov suggested that under the **algebraic approach to building a model** we understand as a system of three components:

1. complex of basic models;
2. system of typical transformations and typical combinations of models;
3. mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
Yu.B. Melnikov suggested that under the algebraic approach to building a model we understand as a system of three components:

1) complex of basic models;

2) system of typical transformations and typical combinations of models;

3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

<table>
<thead>
<tr>
<th>Basic phenomena</th>
<th>Transformations and combinations of phenomena</th>
<th>Approximation mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic languages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yu.B. Melnikov suggested that under the **algebraic approach to building a model** we understand as a system of three components:

1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

<table>
<thead>
<tr>
<th>Basic phenomena</th>
<th>Transformations and combinations of phenomena</th>
<th>Approximation mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic languages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic algorithms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yu.B. Melnikov suggested that under the algebraic approach to building a model we understand as a system of three components:
1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

<table>
<thead>
<tr>
<th>Basic phenomena</th>
<th>Transformations and combinations of phenomena</th>
<th>Approximation mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic languages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic algorithms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yu.B. Melnikov suggested that under the *algebraic approach to building a model* we understand as a system of three components:
1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

<table>
<thead>
<tr>
<th>Basic phenomena</th>
<th>Transformations and combinations of phenomena</th>
<th>Approximation mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts</td>
<td>Math concepts</td>
<td></td>
</tr>
<tr>
<td>Basic languages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic algorithms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yu.B. Melnikov suggested that under the **algebraic approach to building a model** we understand as a system of three components:

1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

<table>
<thead>
<tr>
<th>Basic phenomena</th>
<th>Transformations and combinations of phenomena</th>
<th>Approximation mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts</td>
<td>Math concepts</td>
<td></td>
</tr>
<tr>
<td>Basic languages</td>
<td>Language combinations</td>
<td></td>
</tr>
<tr>
<td>Basic algorithms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yu.B. Melnikov suggested that under the **algebraic approach to building a model** we understand as a system of three components:

1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

<table>
<thead>
<tr>
<th>Basic phenomena</th>
<th>Transformations and combinations of phenomena</th>
<th>Approximation mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts</td>
<td>Math concepts</td>
<td>Math. approval</td>
</tr>
<tr>
<td>Basic languages</td>
<td>Language combinations</td>
<td></td>
</tr>
<tr>
<td>Basic algorithms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yu.B. Melnikov suggested that under the *algebraic approach to building a model* we understand as a system of three components:

1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

<table>
<thead>
<tr>
<th>Basic phenomena</th>
<th>Transformations and combinations of phenomena</th>
<th>Approximation mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts</td>
<td>Math concepts</td>
<td>Math. approval</td>
</tr>
<tr>
<td>Basic languages</td>
<td>Language combinations</td>
<td>Algorithms and methods</td>
</tr>
<tr>
<td>Basic algorithms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yu.B. Melnikov suggested that under the algebraic approach to building a model we understand as a system of three components:

1) complex of basic models;

2) system of typical transformations and typical combinations of models;

3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.4. Mathematics as a system of phenomena

Algebraic approach to mathematical phenomena

<table>
<thead>
<tr>
<th>Basic phenomena</th>
<th>Transformations and combinations of phenomena</th>
<th>Approximation mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts</td>
<td>Math concepts</td>
<td>Math. approval</td>
</tr>
<tr>
<td>Basic languages</td>
<td>Language combinations</td>
<td>Algorithms and methods</td>
</tr>
<tr>
<td>Basic algorithms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yu.B. Melnikov suggested that under the *algebraic approach to building a model* we understand as a system of three components:

1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
Yu.B. Melnikov suggested that under the **algebraic approach to building a model** we understand as a system of three components:

1) complex of basic models;
2) system of typical transformations and typical combinations of models;
3) mechanism of approximation.

The approximation mechanism is intended for (approximate) representation of the required model as a result of applying typical transformations and typical combinations of basic models.
1.5. Historical models of mathematics

Historical models of mathematics are used not only in specialized research on the history of mathematics, but also in mathematical research itself (usually as one of the justifications for relevance), as well as in training courses to increase student motivation and establish interdisciplinary connections.
1.5. Historical models of mathematics

Historical models of mathematics are used not only in specialized research on the history of mathematics, but also in mathematical research itself (usually as one of the justifications for relevance), as well as in training courses to increase student motivation and establish interdisciplinary connections.

Usually, two types of historical models are considered:
1.5. Historical models of mathematics

Historical models of mathematics are used not only in specialized research on the history of mathematics, but also in mathematical research itself (usually as one of the justifications for relevance), as well as in training courses to increase student motivation and establish interdisciplinary connections.

Usually, two types of historical models are considered:
1) personification, which deals with subjects of mathematical activity, their achievements, relationships between them (for example, teacher-student);
1.5. Historical models of mathematics

Historical models of mathematics are used not only in specialized research on the history of mathematics, but also in mathematical research itself (usually as one of the justifications for relevance), as well as in training courses to increase student motivation and establish interdisciplinary connections.

Usually, two types of historical models are considered:
1) personification;
2) phenomenological, the elements of which are mathematical phenomena, and the authors of these phenomena are considered their main attributes, the conditions for their discovery and application.
1.5. Historical models of mathematics

Historical models of mathematics are used not only in specialized research on the history of mathematics, but also in mathematical research itself (usually as one of the justifications for relevance), as well as in training courses to increase student motivation and establish interdisciplinary connections.

Usually, two types of historical models are considered:
1) personification;
2) phenomenological.

Usually, in teaching practice, historical models of mathematics are considered in combination with other models.
2. Applications of models of mathematics

From the point of view of the theory of activity in mathematics, one and the same phenomenon is usually considered both as an object of activity and as a means of activity.
2. Applications of models of mathematics

From the point of view of the theory of activity in mathematics, one and the same phenomenon is usually considered both as an object of activity and as a means of activity.

For example, in the practice of teaching, a prime number acts both as a subject of study,
2. Applications of models of mathematics

From the point of view of the theory of activity in mathematics, one and the same phenomenon is usually considered both as an object of activity and as a means of activity.

For example, in the practice of teaching, a prime number acts both as a subject of study,

In particular, the properties of primes, methods of obtaining (the sieve of Eratosthenes) are considered.
2. Applications of models of mathematics

From the point of view of the theory of activity in mathematics, one and the same phenomenon is usually considered both as an object of activity and as a means of activity.

For example, in the practice of teaching, a prime number acts both as a subject of study, and as an instrument of activity.
2. Applications of models of mathematics

From the point of view of the theory of activity in mathematics, one and the same phenomenon is usually considered both as an object of activity and as a means of activity.

For example, in the practice of teaching, a prime number acts both as a subject of study, and as an instrument of activity.

In the school course of mathematics, a special class of problems is distinguished, the solution of which is based on the properties of divisibility of numbers.
2. Applications of models of mathematics

From the point of view of the theory of activity in mathematics, one and the same phenomenon is usually considered both as an object of activity and as a means of activity.

For example, in the practice of teaching, a prime number acts both as a subject of study, and as an instrument of activity.

Moreover, Yu.B. Melnikov, S.A. Shitikov and S.G. Sintsova showed that for a student who does not plan to become a professional mathematician, when certain natural assumptions (taken as postulates) are fulfilled, only two variants of the attitude to the mathematical phenomenon: as an object of activity (for example, it must be remembered, studied, generalized, etc.) or as an instrument of activity (including the method of its application, the possibilities and limitations of use, etc.).
2. Applications of models of mathematics

From the point of view of the theory of activity in mathematics, one and the same phenomenon is usually considered both as an object of activity and as a means of activity.

For example, in the practice of teaching, a prime number acts both as a subject of study, and as an instrument of activity.

Let’s consider some applications of mathematics models.
2.1. Models of mathematics as a tool for estimating the adequacy of mathematical courses

Using different models of mathematics allows you to understand how balanced different aspects of mathematics are.
2.1. Models of mathematics as a tool for estimating the adequacy of mathematical courses

Using different models of mathematics allows you to understand how balanced different aspects of mathematics are.

The model of mathematics as a field of activity and the hardware model of mathematics make it possible to assess how well the management of educational activities is organized in the course.
2.2. Using models of mathematics to form the content of mathematical courses

Analyzing our textbooks from the standpoint of the hardware model of mathematics, we came to the conclusion that it is necessary to significantly increase the amount of material related to the conceptual and methodological apparatus.
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation.
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. The result is obtained in terms of an algorithm, the steps of which are described not in the form of a mathematical formula, but as manipulations directly with objects.
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..."after discussion is replaced by the phrase
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..."after discussion is replaced by the phrase «The product of matrix A and B called $???
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..."after discussion is replaced by the phrase «The product of matrix A and B called the matrix C, ???"
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..."after discussion is replaced by the phrase «The product of matrix \(\mathbf{A} \) and \(\mathbf{B} \) called the matrix \(\mathbf{C} \), ???”
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..." after discussion is replaced by the phrase «The product of matrix \(A \) and \(B \) called the matrix \(C \), whose elements are determined by the equality \(c_{ij} = \) ».
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..." after discussion is replaced by the phrase «The product of matrix A and B called the matrix C, whose elements are determined by the equality $c_{ij} = a$ ».
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..." after discussion is replaced by the phrase «The product of matrix A and B called the matrix C, whose elements are determined by the equality \(c_{ij} = a \cdot b \) ».
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..." after discussion is replaced by the phrase «The product of matrix \mathbf{A} and \mathbf{B} called the matrix \mathbf{C}, whose elements are determined by the equality $c_{ij} = a \ b$ ».
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..." after discussion is replaced by the phrase «The product of matrix A and B called the matrix C, whose elements are determined by the equality $c_{ij} = a_i b$ ».
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..." after discussion is replaced by the phrase «The product of matrix A and B called the matrix C, whose elements are determined by the equality $c_{ij} = a_i b$ ».
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..." after discussion is replaced by the phrase «The product of matrix A and B called the matrix C, whose elements are determined by the equality $c_{ij} = a_i b_j$».
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..."after discussion is replaced by the phrase «The product of matrix \(\mathbf{A} \) and \(\mathbf{B} \) called the matrix \(\mathbf{C} \), whose elements are determined by the equality \(c_{ij} = a_{ik}b_{kj} \)."
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..."after discussion is replaced by the phrase «The product of matrix A and B called the matrix C, whose elements are determined by the equality $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$».
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..."after discussion is replaced by the phrase «The product of matrix A and B called the matrix C, whose elements are determined by the equality \(c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \».

Thus, the problems with obtaining the formulation that arise among students are of a methodological nature.
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..."after discussion is replaced by the phrase «The product of matrix A and B called the matrix C, whose elements are determined by the equality $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$».

The conceptual apparatus is not reduced to a system of definitions!
2.2. Using models of mathematics to form the content of mathematical courses

For example, the formal definition of the matrix multiplication operation is now preceded by a discussion of how it would be appropriate to introduce this operation. Then the trainees are involved in the design of this algorithm in the form of a formula, followed by the gradual obtaining of the definition of the definition.

For example, the initial version of the definition "Matrix product is called ..." after discussion is replaced by the phrase «The product of matrix \(\mathbf{A} \) and \(\mathbf{B} \) called the matrix \(\mathbf{C} \), whose elements are determined by the equality \(c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \).»

Analysis of the content of the training course from the standpoint of other models leads to no less interesting changes in the training course.
2.3. Application of mathematics models to increase motivation to learn

The idea of mathematics as a set of theorems and concepts to be learned by heart, or as a computing apparatus for solving artificially invented problems currently has a demotivating effect.
2.3. Application of mathematics models to increase motivation to learn

The idea of mathematics as a set of theorems and concepts to be learned by heart, or as a computing apparatus for solving artificially invented problems currently has a demotivating effect.

Using models of mathematics can increase motivation to learn and use mathematics.
2.3. Application of mathematics models to increase motivation to learn

For example, even outside mathematics, the ability to formalize information is relevant,
2.3. Application of mathematics models to increase motivation to learn

For example, even outside mathematics, the ability to formalize information is relevant, to translate information from one language to another, with a fundamentally different grammar and other expressive capabilities,

For example, translation from the language of geometric drawings into any language of mathematical text and vice versa.
2.3. Application of mathematics models to increase motivation to learn

For example, even outside mathematics, the ability to formalize information is relevant, to translate information from one language to another, with a fundamentally different grammar and other expressive capabilities.
2.3. Application of mathematics models to increase motivation to learn

For example, even outside mathematics, the ability to formalize information is relevant, to translate information from one language to another, with a fundamentally different grammar and other expressive capabilities,

\[\text{Find the angle at the vertex of an isosceles triangle with side 5 and base 6.} \]
2.3. Application of mathematics models to increase motivation to learn

For example, even outside mathematics, the ability to formalize information is relevant, to translate information from one language to another, with a fundamentally different grammar and other expressive capabilities,

Find the angle at the vertex of an isosceles triangle with side 5 and base 6.
2.3. Application of mathematics models to increase motivation to learn

For example, even outside mathematics, the ability to formalize information is relevant, to translate information from one language to another, with a fundamentally different grammar and other expressive capabilities,

\[AC = BC = 5, \quad AB = 6 \]
\[\angle ACB = ? \]

Find the angle at the vertex of an isosceles triangle with side 5 and base 6.
2.3. Application of mathematics models to increase motivation to learn

For example, even outside mathematics, the ability to formalize information is relevant, to translate information from one language to another, with a fundamentally different grammar and other expressive capabilities, control the adequacy of statements by comparing fundamentally different models of the same object reflecting the same aspect of the prototype.

Find the angle at the vertex of an isosceles triangle with side 5 and base 6.

\[
\begin{align*}
AC &= BC = 5, \\
AB &= 6 \\
\angle ACB &= ?
\end{align*}
\]
2.3. Application of mathematics models to increase motivation to learn

For example, even outside mathematics, the ability to formalize information is relevant, to translate information from one language to another, with a fundamentally different grammar and other expressive capabilities, control the adequacy of statements by comparing fundamentally different models of the same object reflecting the same aspect of the prototype.

Teaching mathematics allows you to form the ability to build and substantiate hypotheses, use typical strategies of activity (for example, reasoning "by contradiction"), etc.
The electronic manual — is a manual that cannot be printed!

Tutorial "Elementary Mathematics" (rus)
http://lib.usue.ru/resource/free/14/MelnikovAlgebra5/index.html

Tutorial "Mathematical analysis"

Tutorial "Higher mathematics. Linear Algebra and Geometry"

Thanks for your attention!

UriiMelnikov58@gmail.com +7-965-52-88-941

Yury Borisovich Melnikov