«Metrological Support of Innovative Technologies»
ICMSIT-2020
«Elastic bend of twisted waveguide»

I.V. Kudryavtsev, M.V. Brungardt, O.B. Gotseluk, O.I. Rabetskaya, A.A. Sharonov
Problem statement

• Until recently, waveguides in antenna-feeder systems did not count for strength and rigidity, as it had overly large wall thickness of 3-4 mm.

• This paper considers the stress and deflection of a twisted waveguide at bending as the most common and dangerous type of loading.
Solution methods

• We examine the bending of twisted waveguides on the basis of the Euler–Bernoulli beam theory;
• According to the Euler–Bernoulli beam theory, the stress and bending deflections of the twisted waveguide are inversely proportional to the integral characteristics of the cross section.
Conclusions

Results, implementation

• In this paper, the Euler–Bernoulli beam theory has been chosen to evaluate the general distribution of stress and deflection, in a twisted waveguides at bend.

• The ratio of maximum to minimum values for moments of inertia and the section modulus are equal to:

\[k_j = \frac{I_{\text{MAX}}}{I_{\text{MIN}}} \approx \frac{B}{H} \]

\[k_w = \frac{W_{\text{MAX}}}{W_{\text{MIN}}} \approx \left(\frac{B}{H}\right)^2 \]

• It is rational to use in solve the worst combination of geometric parameters relative to a load direction

\[I_w = \min(I_x, I_y) \quad W_w = \min(W_x, W_y) \]

• The shell model of a twisted waveguide is expected to be developed in further research and allow to obtain a more accurate assessment of stresses and deflections.
Contacts

• I.V. Kudryavtsev, M.V. Brungardt, O.B. Gotseluk, O.I. Rabetskaya, A.A. Sharonov

 Siberian Federal University

 E-mail: ikudryavcev@sfu-kras.ru