«International Conference on Advances in Material Science and Technology - CAMSTech-2020»

«Technological basis for the synthesis of polymer composite on the basis of highly filled with tungsten oxide polyimide matrix»

R N Yastrebinsky, Z V Pavlenko and A V Yastrebinskaya
Problem statement

Despite extensive studies of polyimide composites (glass, carbon plastic) and Kapton-HN polyimide film from Du Pont (USA) for spacecraft, there are no data on the development of radiation protective polyimide matrices filled with tungsten (IV) oxide.

• In this work, probe microscopy of the surface of a filled polyimide composite and its density depending on the content of tungsten dioxide was studied.
• The optimal composition of the composite material is determined based on the data on the passage of ultrasonic waves in it.
Solution methods

- As a radiation-protective filler, powdered tungsten dioxide with a bulk density of 12.1 g/cm³ and a dispersion of 0.2-10.0 μm, modified with polyethylsiloxane from a solution of n-hexane, was used.

- Thermoplastic polyimide in the form of press powder (particle size 2-5 microns) was used as the polymer matrix.

- The composite material was pressed at a specific pressure of 200 MPa with constant heating and holding at a temperature of 325 °C, followed by quenching at 250 °C and cooling to room temperature.

- The measurements of the propagation velocities of ultrasonic waves were carried out in a pulsed mode at a frequency of 35 kHz.
Conclusions

• When creating radiation-protective composites, an increase in packing density leads to an increase in the protective characteristics of finished products.

• The use of a modified filler made it possible to increase the degree of filling of the polyimide composite by 15–20% compared with unmodified tungsten dioxide with the same strength of the composite.

• The optimal degree of filling of the polyimide composite with modified tungsten dioxide, which is 65% of the mass.

3D topography of the surface of a polymer composite with unmodified (a) and modified (b) tungsten dioxide
Contacts

R N Yastrebinsky
Belgorod State Technological University named after V.G. Shukhov, 46, Kostyukova str., Belgorod, 308012, Russia
E-mail: yrndo@mail.ru